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11.4 Since all of these circuits are have one pole, all of the Bode plots will look qualitatively identical, with
some DC gain at low frequencies that rolls off at 20 dB/dec after hitting the pole at ω−3 dB. This is
shown in the following plot:
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For each circuit, we’ll derive |Av| and ω−3 dB, from which the Bode plot can be constructed as in the
figure.
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11.5 Assuming the transfer function is of the form
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we get the following Bode plot:
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11.6
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11.7 The gain at arbitrarily low frequencies approaches infinity.
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11.8 The gain at arbitrarily high frequencies approaches infinity.
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11.16 Using Miller’s theorem, we can split the resistor RF as follows:
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11.17 Using Miller’s theorem, we can split the resistor RF as follows:
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11.18 Using Miller’s theorem, we can split the resistor ro as follows:
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11.20 Using Miller’s theorem, we can split the capacitor CF as follows (note that the DC gain is Av = gmro

1+gmro
):
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Thus, we have
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(
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As λ → 0, ro → ∞, meaning the gain approaches 1. When this happens, the input capacitance goes
to zero.

















11.26 At high frequencies (such as fT ), we can neglect the effects of rπ and ro, since the low impedances of
the capacitors will dominate at high frequencies. Thus, we can draw the following small-signal model
to find fT (for BJTs):
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The derivation of fT for a MOSFET is identical to the derivation of fT for a BJT, except we have CGS

instead of Cπ and CGD instead of Cµ. Thus, we have:
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11.37 Using Miller’s theorem to split Cµ1, we have:

ωp,in =
1
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11.39 (a)

ωp,in =
1

RS [CGS + CGD (1 + gmRD)]
= 3.125× 1010 rad/s

ωp,out =
1

RD

[

CDB + CGD

(

1 + 1
gmRD

)] = 3.846 × 1010 rad/s

(b)
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VThev

(s) =
(CGDs − gm)RD

as2 + bs + 1

a = RSRD (CGSCGD + CDBCGD + CGSCDB) = 2.8 × 10−22

b = (1 + gmRD)CGDRS + RSCGS + RD (CGD + CDB) = 5.7 × 10−11

Setting the denominator equal to zero and solving for s, we have:

s =
−b ±

√
b2 − 4a

2a

|ωp1| = 1.939 × 1010 rad/s

|ωp2| = 1.842 × 1011 rad/s

We can see substantial differences between the poles calculated with Miller’s approximation and
the poles calculated from the transfer function directly. We can see that Miller’s approximation
does a reasonably good job of approximating the input pole (which corresponds to |ωp1|). However,
the output pole calculated with Miller’s approximation is off by nearly an order of magnitude when
compared to ωp2.



11.40 (a) Note that the DC gain is Av = −∞ if we assume VA = ∞.

ωp,in =
1

(RS ‖ rπ) [Cπ + Cµ (1 − Av)]
= 0

ωp,out = 0

(b)

Vout
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(RS ‖ rπ) (CπCµ + CCSCµ + CπCCS)

We can see that the Miller approximation correctly predicts the input pole to be at DC. However,
it incorrectly estimates the output pole to be at DC as well, when in fact it is not, as we can see
from the direct analysis.



11.41

|ωp1| = lim
RL→∞

1
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The dominant-pole approximation gives the same results as analyzing the transfer function directly, as
in Problem 40(b).























11.49
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Miller’s effect is more significant here than in a standard cascode. This is because the gain in the
common-emitter stage is increased to four in this topology, where it is about one in a standard cascode.
This means that the capacitor Cµ1 will be multiplied by a larger factor when using Miller’s theorem.





















11.58
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ov = 0.5 mA

(W/L)1 = (W/L)2 = 250
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gm1 = gm2 =
W

L
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RD = 1.768 kΩ

Av = −gm1RD = −8.84






